
High-Level Musical Concepts in µO

Stéphane Rollandin
hepta@zogotounga.net

draft - 08 May 2013

Abstract

We comment here a short musical composition fragment
programmed in the µO Smalltalk system with a few lines
of code instanciating very high-level musical objects.

The emphasis in µO is on reifying musically meaningful
concepts into objects that appear "real" in a practical
sense, and on providing ways to organize them into music
in a manner as natural as possible.

Hopefully you will get the taste of µO by the end of this
paper.

Notation

In the following, the printed evaluation of a Smalltalk
expression is represented following a ► symbol. When a
graphic representation is available (a screenshot of a µO
editor in most cases), it is displayed after a ►. All code is
written in Consolas font.

1. The code & the music

Besides is the Smalltalk source code for a 16-seconds
composition fragment.

Its piano rendition is available online at:
http://www.zogotounga.net/zik/purdie%20variation.flac

2. The algorithm, explained

We start from a rhythm and a chord progression. Each
chord in the progression is instanciated as a tetratonic
mode and associated to a measure of the rhythm. This
defines an harmonic framework.

We play a half-time Purdie shuffle1 drum pattern over the
rhythm, but there is a trick: instead of striking drums, we
strike harmonic degrees of the underlying chord.

We complement the rhythmic melody with a couple of
notes: the degrees 1 to 4, in turn, of the underlying
harmony, on specific beats only; which beats are to be
played depends on a Xenakis sieve.

1 http://en.wikipedia.org/wiki/Bernard_Purdie

 rhythm :=
 #(M 2 ((2 2) 4) 2 ((2 2) 4.3) 2 ((4 2) 4)) sig.

 rhythm ritardando.

 rhythm bpm: 115.

 mode := Mode D major.

 harmony := rhythm asCanvas on: #downBeats place: {
 mode I7 asChromaticMode.
 mode bVII7 asChromaticMode.
 mode bIV7 asChromaticMode.
 mode bVI7 asChromaticMode.
 mode IV7 asChromaticMode.
 mode I7 asChromaticMode}.

 (drumKit := GrooveDrumKit new)
 flavorAt: #bass
 put: (Stroke drum: -3 for: 2) mf;
 flavorAt: #snare
 put: (Stroke drum: 2 for: 1.5) ;
 flavorAt: #rideCymbal
 put: (Stroke drum: 4 for: 1) mp;
 flavorAt: #hiHat
 put: (Stroke drum: -9 for: 3) mf.

 ride :=
 (HalfTimeShuffle purdie3 drumKit: drumKit)
 on: rhythm.

 harmonicDrummer :=
 HarmonicDrummer new harmony: harmony.

 phrase := harmonicDrummer drumPattern: ride.

 degrees := #(1 2 3 4) cyclicGenerator.

 rhythm asCanvas
 on: #beats
 onSieve: (3@@2 * (2@@1) * (4@@0))
 do: [:beat |

phrase addNote:
 (((harmony bolAround: beat time)
 degree: degrees next)

 forte time: beat time; length: 3)].

 phrase disturbTimes; disturbAmplitudes.

Finally we very slightly blur the melody, by randomly
offsetting by small amounts note onsets and amplitudes.

1

2. The algorithm, detailed

2.1 rhythm

The rhythm of the melody is stored in variable rhythm.
It is defined by the numbers

2 ((2 2) 4) 2 ((2 2) 4.3) 2 ((4 2) 4)

which mean:

 2 measures of 4/4,
 followed by 2 measures of 4/4, slightly faster,
 followed by 2 measures of 6/4, more exactly of 4+2/4
 (that's an additive time signature)

We apply a ritardando to the whole rhythm. This could
be defined with arbitrary precision but in here we stick
with the default #ritardando selector.

We also slightly accelerate the overall tempo by setting
the BPM to 115 where by default it would be 120. This is
the number of quarter notes per minutes (the reference
being the duration of a quarter note at the very beginning
of the rhythm, before the ritardando).

2.2 harmony

The mode is D major, stored in variable mode.

The chord progression is I7 bVII7 bIV7 bVI7 IV7
I7, but you can see that it is defined in a more complex
way:

harmony := rhythm asCanvas on: #downBeats place: {
 mode I7 asChromaticMode.
 mode bVII7 asChromaticMode.
 mode bIV7 asChromaticMode.
 mode bVI7 asChromaticMode.
 mode IV7 asChromaticMode.
 mode I7 asChromaticMode}.

harmony is the harmonic framework. It is more than the
chords progression: each chord symbol (such as IV7) is
replaced by a full-fledged chromatic mode (or scale, in
common musical parlance). This will allow us to get
notes from the harmony from a plain integer, the note
degree in the harmonic mode.

For example,

Mode D major IV7
► 'g b do4 f'

and so

Mode D major IV7 asChromaticMode degree: 2
► 'b'

The rhythm asCanvas on: #downBeats place: part means
"take each downbeat in turn in rhythm, and have the
corresponding harmonic mode start there". Of course
each mode overrides the previous one, so at the end of the
expression what is returned into variable harmony is the
progression of six harmonic modes associated to six
measures of rhythm.

2.3 ride

Now we can start grooving. Really: HalfTimeShuffle
is a subclass of Groove, that is an object who knows how
to populate a rhythm in a specific style.

For example:

HalfTimeShuffle new on: #((2 2) 4) sig
► D([#bassDrum1 0.45t0d0.5]
 [#closedHiHat 0.45t0d0.5]
 [#acousticSnare 0.26t0.17d0.17]
 [#rideCymbal1 0.45t0.33d0.17]
 [#rideCymbal1 0.45t0.5d0.5]
 [#acousticSnare 0.26t0.67d0.17]
 [#rideCymbal1 0.45t0.83d0.17]
 [#acousticSnare 0.55t1.0d0.5]
 [#rideCymbal1 0.45t1.0d0.5]
 [#acousticSnare 0.26t1.17d0.17]
 [#rideCymbal1 0.45t1.33d0.17]
 [#rideCymbal1 0.45t1.5d0.5]
 [#acousticSnare 0.26t1.67d0.17]
 [#rideCymbal1 0.45t1.83d0.17])L2.0

The above list is the string representation of a drum
pattern, a half-time shuffle played over a single measure
of a plain 4/4 time signature at 120 BPM.

So the expression

ride :=
 (HalfTimeShuffle purdie3 drumKit: drumKit)
 on: rhythm.

stores a drum pattern in variable ride.

But we do not want to play battery, only piano. So we
need two things: a special drumkit, and a special
drummer.

2.4 drumming on the piano

The drumkit tells the groove which symbols should be
associated to its inner #bass, #snare, #rideCymbal
and #hiHat.

So the part

2

(drumKit := GrooveDrumKit new)
 flavorAt: #bass
 put: (Stroke drum: -3 for: 2) mf;
 flavorAt: #snare
 put: (Stroke drum: 2 for: 1.5) ;
 flavorAt: #rideCymbal
 put: (Stroke drum: 4 for: 1) mp;
 flavorAt: #hiHat
 put: (Stroke drum: -9 for: 3) mf.

tells, for example, that when the groove hits a #bass,
what it really means is that it strikes an integer, -3, for 2
seconds, mezzo-forte.

Of course only a special drummer can strike an integer !
A Drummer is an object that knows how to convert a
drum pattern into a musical phrase. A drum pattern is
kind of abstract: each drum is represented by a symbol
(even the integer -3 is actually encoded as the symbol
#'-3' into the drum pattern). To be able to get the music
out of a drum pattern, we need a Drummer.

The default drummer would map drum symbols into
MIDI events in channel 10, but here our symbols are
numbers and what we want is get the corresponding
notes, according to an underlying harmonic framework:
each number will be mapped to the corresponding degree
of the appropriate harmonic mode. This is what
HarmonicDrummer does.

The expression

harmonicDrummer :=
 HarmonicDrummer new harmony: harmony.

instanciates an HarmonicDrummer based on harmony.
The expression

phrase := harmonicDrummer drumPattern: ride.

has the drummer interpret the ride drum pattern and
stores the resulting musical phrase in variable phrase.

2.5 overlaying a sparse melody

To spice up the rhythmic melody we now have in
phrase, we add some notes at specific points.

To get the note pitches, we iterate over the degrees 1 to 4,
via a Generator. This is an object acting like a
dispenser: you give it a list of objects and it gives them
back one by one when you ask it what's #next.

degrees := #(1 2 3 4) cyclicGenerator.
degrees next
► 1
degrees next
► 2
degrees next

► 3
degrees next
► 4
degrees next
► 1

etc.

To get the note onsets, we do something similar to the
way we built harmony, by walking the beats of rhythm.
The expression

rhythm asCanvas
 on: #beats
 onSieve: (3@@2 * (2@@1) * (4@@0))
 do: [:beat |

phrase addNote:
 (((harmony bolAround: beat time)
 degree: degrees next)

 forte time: beat time; length: 3)].

says something like: "at each beat in rhythm, provided
that its index is accepted by the XenakisSieve of
formula 3@@2 * 2@@1 * 4@@0, add a 3-seconds forte note
of the degree yielded by the degrees generator".

The Xenakis sieve (which I will not explain here)2 is a
SieveFunction, a function accepting an integer and
returning a boolean, which is a nice and compact way to
get patterns of 0 and 1 and is used here to define a
rhythm.

Needless to say, the 3@@2 * 2@@1 * 4@@0 formula has
been found by random attempts until it sounds good. No
other reason for its precise form.

3. The algorithm, illustrated

Discarding the petty technical details we can see the
phrase melody as a simple combination of three musical
structures: rhythm, harmony, and ride.

These structures are quite complex Smalltalk objects with
a rich protocol; we can play with them, explore them,
display them and edit them in many ways.

They can notably be interactively edited via specific
graphical interfaces; although instanciated by code, they
can be tweaked manually in minute details.

In the following we will introduce screenshots of the
corresponding editors.

2 This type of sieve is described in detail by Christopher
Ariza in
http://www.mitpressjournals.org/doi/pdf/10.1162/014892

6054094396
(the µO implementation is based on that paper)

3

Here is our base rhythm:

rhythm
►

The down beats, on beats and off beats are displayed as
more and more lighter vertical lines. The blue boxes
allow interactive stretching and moving of individual
beats or whole measures, for rubato effects.

Here is our harmonic framework:

harmony
►

Okay this one is rather ugly... the bols editor needs some
love. Still you can see how each harmonic mode is indeed
in sync with a measure of rhythm.

Here is our drum pattern:

ride
►

Last but not least, here is our composition:

phrase

or, if you prefer a more traditional style of score
representation:

phrase

With the right display options you can actually mix the
representations:

phrase

4. The algorithm, explored

Let's see more in detail how to play with the high-level
musical objects we are now familiar with.

4.1 rhythm

rhythm is an instance of class RhythmicCell3. It has
been defined via the representation of a time signature.

#(4 4) sig

is a 4/4 signature where all beats but the first would be
weak.

#((2 2) 4) sig

is the usual 4/4, with two strong beats alternating with
two weak beats.

3 See "The representation of Rhythmic Structures in
µO":

http://www.zogotounga.net/surmulot/The
%20Representation%20of%20Rhythmic%20Structures
%20in%20muO.pdf

4

#((2 3 2) 4) sig

is a 2+3+2/4 time signature.

In our example,

#(M 2 ((2 2) 4) 2 ((2 2) 4.3) 2 ((4 2) 4)) sig

the rhythmic cell is defined as the succession of 2
measures of different cells: 4/4, a faster 4/4, and 4+2/4,

#((2 2) 4.3) sig

is a faster 4/4 because instead of a quarter (1/4) note, we
use a 1/4.3 note as beat. We are familiar with 1/2, 1/4, 1/8
and 1/16 notes (respectively quarter, half, eighth and
sixteenth in American english) but nothing prevents a
computer to use any number as denominator; and that's
what we do here. The effect is to increase the tempo of
the middle section of rhythm.

The M at the beginning of rhythm signature forces the
succession of cells that follows to be considered as a
single measure, that is a single rhythmic cell. Without the
M, the expression

#(2 ((2 2) 4) 2 ((2 2) 4.3) 2 ((4 2) 4)) sig

would instead return an instance of RhythmicCanvas.
A rhythmic canvas is an object composed of several
rhythmic cell; we will see more about it below.

The ritardando we apply to rhythm is the default
#ritardando method defined in µO for all musical
elements4.

If we look at the implementation of method
#ritardando, we can see (not here, you have to this in
a Squeak image) that it is

self accelerandoBy: 0.840896415253715

so the general method for ritardando/accelerando is
#accelerandoBy: which accepts a numerical
argument. The default argument 0.840896415253715 is
such that applying four times in a row #ritardando
will end up decreasing the tempo by half, which is neat.

We can go further and see how #accelerandoBy: is
implemented. It is:

4 MusicalElement subclasses are the main building
block for musical structures in µO.

See "The Mixing Algebra of Musical Elements in µO":
http://www.zogotounga.net/surmulot/The%20Mixing

%20Algebra%20of%20Musical%20Elements%20in
%20muO.pdf

self tempoFollow: (GenericEnvelope
 parabolicAccelerandoBy: aFactor
 from: self startTime
 to: self endTime)

It is worth spending some time on this implementation
because it shows clearly a couple of crucial points of
general importance in the overall design of µO:
 - provide simple entry points
 - allow arbitrary level of detailing
 - use high-level concepts whenever possible
 - allow interactive edition at any level
 - provide a generic API to all musical elements

We just encountered the first two points (provide simple
entry points, allow arbitrary level of detailing) by
exploring the implementation of #ritardando, which is
the simplest entry point, but can be replaced by
#accelerandoBy: in order to define precisely via a
numeric argument the amount of ritardando, and which
itself can be replaced by the more general
#tempoFollow:.

#tempoFollow: distorts the temporal structure of a
musical element according to an envelope; this illustrates
the third point (use high-level concepts whenever
possible).

Envelopes (instances of class GenericEnvelope) are a
very important class of objects in µO. They provide the
base for all continous gestures, along with functions
(instances of class NFunction)5.

Here we can see that the default nature of a ritardando or
accelerando, as implemented in #tempoFollow:, is
parabolic. With argument 0.1 (the default 0.84 makes it
almost linear) it looks like:

GenericEnvelope parabolicAccelerandoBy: 0.1 from: 0
to: 1

We could have a different, more dramatic, ritardando by
using an exponential shape:

5 Functions and envelopes are intimately related: any
function segment can be converted into an envelope,
any envelope can be converted into a periodic or
aperiodic function. Moreover, the interpolation curves
between two envelope breakpoints are defined via
functions.

5

GenericEnvelope exponentialAccelerandoBy: 0.1 from:
0 to: 1

And we could also have a custom type of ritardando by
defining our own curve, either programmatically or
interactively; the above picture is the display of an
envelope editor. Working a little in this editor we can
come up with something like

This illustrates the fourth point: allow interactive edition
at any level.

The last point (provide a generic API to all musical
elements) is illustrated in our example by the fact that
#tempoFollow:, #startTime and #endTime are
defined for all subclasses of MusicalElement.

4.2 mode

Our mode is D major. This is an instance of
ChromaticMode6.

The harmonic background is build from mode chords.

ChromaticMode implements a wealth of messages such
as #I, #ii #vio, #bIV7 giving direct access to common
chords of a given mode:

Mode C major iii, Mode C major bIV, Mode C major I7
►

6 See "Modes and Scales in µO":
http://www.zogotounga.net/surmulot/Modes%20and
%20Scales%20in%20muO.pdf

More unusual chords for which a method is not provided
can be built on specific degrees by using methods #I:,
#II:, #III:, etc.

(Mode C major I: #sus4), (Mode C major bIV: #m7b5)
►

mode is equal-tempered: its notes map directly to MIDI
notes. We could have chosen another temperament, by
coding for example

mode := Mode D major perfectFifths

or

mode := Mode D major.
mode temperament: ChromaticScale mean16

Similarly, we could have chosen another tuning than the
default 440 Hz A:

mode A: 415

or

mode withBaroquePitch

The notes produced by a mode keep a reference to it, so
they transpose accordingly:

Mode major withBaroquePitch degree: 4
► f

(Mode major withBaroquePitch degree: 4) mode tuning
► 9->415.0

4.3 harmony

A mode can be generated from any musical phrase. In our
example we use #asChromaticMode to generate the
harmony associated to each chord.

"Chromatic" here tells that the newly created mode scale
is the usual 12-TET; this means that, when transposing a
note in that mode one scalar step up, it will be raised by a
semitone.

Alternatively we could have used #asOctavicMode
which creates a mode whose scale is made by the initial
note pitches cycled every octave. In that case scalar and

6

modal transposition are equivalent and change a pitch by
moving from one note to the next in the initial phrase. For
the record there is also #asMode which creates a mode
with a non-octavic interval; this will not be discussed
here7. The main point to note is that a Mode in µO is a
very high-level object that can encode subtle intervallic
behaviors.

Let's get back to harmony. Using #asChromaticMode
we created the modes responsible for interpreting the
integers defining our melody as degrees. Now to map
each of these modes to a specific part of rhythm we used
the idiom

rhythm asCanvas on: #downBeats place: { the modes }

Later in the code, we added some notes to phrase this
time with the idiom

rhythm asCanvas
 on: #beats
 onSieve: (3@@2 * (2@@1) * (4@@0))
 do: [a block]

These are methods to walk a RhythmicCanvas and do
something at specific places.

A rhythmic canvas structures time according to the
rhythmic cells it is made of. As a consequence, any point
in time is associated to a unique beat by a rhythmic
canvas.

Now reversely, we can iterate over the canvas beats.
There is only a finite number of beats because a canvas
has a beginning (the start time of its first cell) and an end
(more complex to define: it is the start time of its last cell
if the canvas has more than one cell, else it is the end
time of its single cell).

A beat can be either #strongest, #strong, #weak or
#void. In common western music this can be interpreted
as:

#strongest -> down beat
#strong -> on beat
#weak -> off beat
#void -> rest place-holder8

This means that each beat in a rhythmic canvas has a
qualitative aspect. We can refer to all beats that are
strongest by the symbol #downBeats; similarly we have
#onBeats, #offBeats and #voidBeats.

7 Again see "Modes and Scales in µO"
8 The void beat has another interpretation in Indian

music, where it represents the khali.
See http://chandrakantha.com/articles/indian_music/khali.html

We can use these qualities to define other groups of beats
according to their relative positioning: for example
#upBeats (for all beats preceding a downbeat),
#backBeats (the beats following a on-beat), or
#lastBeats (the beats before a new time signature).

All theses symbols correspond to canvas places.

Other places span several beats: for example #measures
(the repetitions of a rhythmic cell), #meters (the region
structured by a rhythmic cell and its corresponding
measures) or #consecutiveOffBeats (the region
covered by consecutive #weak beats).

Finally some places refer to beats that do not exists as
such in the canvas but are created on the fly; for example
#ternaryDividedBeats (the beats in the triple
division of the canvas).

Let's see what this looks like for a plain 4/4 time
signature:

#((2 2) 4) sig asCanvas displayPlaces
►

RhythmicCanvas provides a protocol for iterating over
these places, doing different kind of operations along the
corresponding beats.

7

For example

on: #downBeats collect: [a block]

evaluates for each downbeat in the canvas the code in the
block with the beat as argument. It returns the results as
an array of objects.

In our code we already saw

on: #beats onSieve: a sieve collect: [a block]

which evaluates the block for all beats that also fit the
sieve function provided as second argument; this way we
can count over the places.

There are many more of these methods; this is not the
place to discuss them. The important point here again is
how we can work at a very high-level on a musical
structure (the rhythmic canvas in this case) by using
musically meaningful concepts.

In µO we want the code to tend to look like a declarative
description of the structure of the composition; Smalltalk
syntax makes it possible.

4.4 ride

The HalfTimeShuffle groove that makes most of our
melody is precisely based on the notion of canvas places:
in fact any Groove is defined in terms of places.

For example the SimpleRide groove is defined by its
#run:over: method which source code is:

run: operator over: aRCanvas

 aRCanvas on: #onBeats
 do: (operator add: self bass).
 aRCanvas on: #offBeats
 do: (operator add: self snare).
 aRCanvas on: #voidBeats
 do: (operator erase: self snare).
 aRCanvas on: #beats
 do: (operator add: self rideCymbal).

The above defines the most basic pop/rock drum pattern:

SimpleRide on: #((2 2) 4) sig
►

A groove need not be encoded in a specific class such as
SimpleRide or HalfTimeShuffle. It can also be
created on a ad hoc basis via a small domain-specific
language interpreted by class GrooveOnDemand.

For example:

groove := GrooveOnDemand with:
 #((onBeats addLouder: bass)

(downBeats erase: bass)
((beats TDb2) add: rideCymbal)
(downBeats erase: rideCymbal)
(downBeats add: hiHat)
(TDb1 addGhost: snare)
(TDb2 onMSieve: 2 2 add: bass)
(onBeats atCounts: 2 add: bass)
(TDb1 atCounts: 3 erase: snare))

groove on: #((2 2) 4) sig
►

Very complex patterns can be build easily this way,
independently of any time signature; let's apply the above
groove to another rhythm:

groove on: #((2 3 3) 8) sig
►

4.5 phrase

We will end this tour of some of the more important high-
level objects in µO with the musical phrase, which is the
object eventually holding our melody.

phrase is an instance of MusicalPhrase, which is a
MusicalCollection of MusicalNote-s.

Musical notes can be mapped into MIDI data9, Csound
score or OSC messages. By itself a MusicalNote is
format-agnostic: it provides pitch (possibly structured in

9 The audio file referenced at the beginning of this paper
has been synthesized by a VST instrument playing the
Salamander Grand Piano soundfont, available at
http://rytmenpinne.posterous.com/pages/salamander-

grand-piano-46556

8

reference to a mode), onset, length and amplitude. Pitch
and amplitude can be envelopes; moreover pitch
envelopes are transposable according to the note mode.
This allows Indian meends10 to be easily programmable.

A specific format allows a compact specification of
complex phrases; this is discussed elsewhere11.

5. References

The home page for µO (aka Musical Objects for Squeak)
is http://www.zogotounga.net/comp/squeak/sqgeo.htm

10 http://www.itcsra.org/alankar/meend/meend_index.ht
ml

11 See "String Representation of Musical Phrases in µO"
http://www.zogotounga.net/surmulot/String
%20representation%20of%20musical%20phrases%20in
%20muO.pdf

9

